If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-3t^2-56t+29
We move all terms to the left:
0-(-3t^2-56t+29)=0
We add all the numbers together, and all the variables
-(-3t^2-56t+29)=0
We get rid of parentheses
3t^2+56t-29=0
a = 3; b = 56; c = -29;
Δ = b2-4ac
Δ = 562-4·3·(-29)
Δ = 3484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3484}=\sqrt{4*871}=\sqrt{4}*\sqrt{871}=2\sqrt{871}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-2\sqrt{871}}{2*3}=\frac{-56-2\sqrt{871}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+2\sqrt{871}}{2*3}=\frac{-56+2\sqrt{871}}{6} $
| 0=6x^2+31x-30 | | 6=k/2 | | 7^1/x.3^1/x.2^1/x=1764 | | (X^2)-2x=1.25 | | 2(2x+6)+2x=76 | | 5x^2-88x+400=0 | | 1/3(x-4)+1/12(2x-5)=1/4x | | I=2250-35p-4p^2 | | 1/3(x-4)+1/2(2x-5)=1/4x | | y/2+y/3=3/4 | | 17x-13-16x=-14 | | 7.86x4.6=0 | | 6x–20–3x=-7–39x-10 | | 5y-13=11 | | (4n-15)/(n-3)+(n-3)/(4n-15)=17/4 | | 7x+9=5+8 | | -19/2+17.5y=0 | | 5^x-4x-1=0 | | 8x=0+12 | | 0=3n+12-9 | | 5^x=4x+1 | | 3/2=5/6+3x/4 | | 4(2)-x=14 | | 79=0.65x+0.10x+17+x | | 4y-2y+10=14 | | 3y*15=225 | | x-2/2-x-3/3=x-4/4 | | 65.87=0.65x+0.10x+17+x | | 65.87=(0.65x)+(0.10x)+17 | | x+5/7=14x+7/9 | | 65=0.65x+0.10x+17+x | | 0.5/6=x/30 |